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DYNAMIC ANALYSIS OF A ROTOR SYSTEM
CONSIDERING A SLANT CRACK IN THE SHAFT
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The dynamic behaviour of structures—in particular, rotors containing cracks—is a
subject of considerable current interest. Several researchers have developed models of
cracked rotor systems considering mainly the transverse surface crack. In the present study
finite element (FEM) analysis of a rotor–bearing system for flexural vibrations has been
considered by including a shaft having a slant crack that has resulted from the fatigue of
the shaft due to the torsional moment. A flexibility matrix for a slant crack and later the
stiffness matrix of a slant cracked element have been developed to be used subsequently
in the FEM analysis of the rotor–bearing system. The frequency spectrum of the steady
state response of the cracked rotor was found to have sub-harmonic frequency components
at an interval frequency corresponding to the torsional frequency, which can be used for
crack detection.
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1. INTRODUCTION

One form of damage that can lead to catastrophic failure if undetected is fatigue cracks
in the shaft. Several researchers have developed models of cracked rotor systems in order
to predict the change in vibrational behaviour due to crack growth.

The first studies on cracked rotors were started in the 1970s by Dimarogonas [1] and
Pafelias [2], although the fact that a crack affects the dynamic response of a structural
member was known long ago through the attempts of Kirmser [3] and Thomson [4]. Since
then, many researchers have realized the importance of the cracked structures; in
particular, the dynamics of cracked rotors, which is well documented in a book by
Dimarogonas and Paipetis [5], followed by a literature survey by Wauer [6] and, more
recently, a survey on simple rotors by Gasch [7] and a review on general cracked structures
by Dimarogonas [8].

However, all of the works reported in [5–8] consider mainly the transverse crack of the
shaft, which occurs as a result of fatigue of shaft material due to an excessive bending
moment. Ichimonji and Watanabe [9] considered a slant crack that occurs from the fatigue
of the shaft due to the torsional moment, and studied the dynamics of a simple rotor for
qualitative analysis. Extending this work [9], Ichimonji et al. [10] presented, using 3-D
FEM, a quantitative analysis of a rotor with a slant crack. To the best of the authors’
knowledge, references [9, 10] are the only works on a slant crack. Hence, attention to the
study of rotor system with slant cracks is required, as the use of large rotating machines
driven under operating systems which are apt to induce torsional vibration, such as daily
start and stop operation or thyristor motor driving, has increased recently.
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In the present study, FEM analysis of a rotor–bearing system for flexural vibrations has
been considered by including a shaft having a slant crack. The present study involves
deriving a flexibility matrix for the slant crack, on similar lines as the work of
Papadopoulos and Dimarogonas [11] for a transverse crack. This will be used to develop
a stiffness matrix of a cracked element, to be used subsequently in the FEM analysis of
the rotor–bearing system.

2. THEORY

As discussed in reference [9], the development of a slant crack can be understood by
considering the shaft element shown in Figure 1(a). Applying a torsional moment, MZ to
shaft causes primary stresses on its surface, and they are orthogonal to each other at an
angle of 45° towards the axis of the shaft. When a torsional vibratory moment is applied
to the shaft under the condition of a smaller amplitude over a longer period, a slant crack
can grow along the primary stress line [9], as shown in Figure 1(b). The positive torsional
moment puts tensional stress on the surfaces of the crack in such a way as to open it. On
the other hand, negative torsional moment applies compressional stress, causing the crack
to close.

The change in stiffness according to the ‘‘breathing’’ (crack open and close) of the crack
is explained in detail in section 4. The slant crack may develop in three modes, and the
cross-sections of the rotor with these three different types of slant crack are shown in
Figure 2. In the present study, a quarter crack is considered for the analysis.

Figure 1. (a). The primary stress directions of a shaft under torsional loading (from reference [9]). (b) The
breathing behaviour of a slant crack (from reference [9]): (i) MZ q 0; (ii) MZ Q 0.
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Figure 2. The slant crack configuration (from reference [10]). (a) Quarter crack; (b) half crack; (c) round crack.

3. CRACK MODELLING

3.1.     

Consider a rotor–bearing system with a slant crack as shown in Figure 3. The rotor is
discretized into finite beam elements. Each element has two nodes with six degrees of
freedom (d.o.f.) at each node. The shaft element is loaded with axial force P1, shear forces
P2 and P3, bending moments P4 and P5 and torsional moment P6, and these result in a
nodal vector {q}, as shown by q1–q12 in Figure 3.

The details of a cracked cross-section with slant crack of depth a along the minor axis
of the slant section are given in Figure 4. The section along the crack direction which will
be at 45° degrees to the shaft axis is an ellipse of major axis D/cos 45° and minor axis D.

Proceeding in a similar away as in reference [11] for a transverse crack, the compliance
matrix for a slant cracked section has been developed in the present study.

The Paris equation gives the additional displacement ui due to a crack depth of a in the
ith direction as

ui =
1

1pi g
a

0

J(a) da, (1)

where J(a) is the strain energy density function (SEDF) and pi is the corresponding load.
The SEDF is

J(a)=
1
E' $0s

6

i=1

KIi1
2

+0s
6
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KIIi1
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+m0s
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2

%. (2)
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Figure 3. A rotor–bearing system model with a slant crack element.

where E'=E or E/(1− n2) for plane stress and plane strain conditions respectively and
m=1+ n. The Kij are the stress intensity factors (SIF) for i=I, II and III modes; namely,
the opening type, sliding type and tearing type cracks, for 1, 2, . . . , 6 load index. A list
of nomenclature is given in the Appendix.

The local flexibility due to the crack per unit width is given by the definition

cij =
1ui

1pj
=

1

1pi $ 1

1pj g
a

0

J(a) da% (3)

After integration along the width b (along the semi-major axis for the quarter crack) of
the crack of depth a (along the semi-minor axis),

cij =
12

1pi 1pj g
b

0 g
a

0

J(a) da dx. (4)

Figure 4. The details of the slant crack section.
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The values of SIF in equation (2) for a strip of unit thickness with a slant crack are
calculated as

KI1 = s1zpa F1(a/h), s1 =
P1

z2pR2
,

KI4 = s4zpa F1(a/h), s4 =
z2P4x

pR4 ,

KI5 = s5zpa F2(a/h), s5 =
2P5

pR4 (2R2 − x2)1/2,

KI2 =KI3 =KI6 =0,

KII3 = s3zpa FII (a/h), s3 =
kP3

z2pR2

KII6 = s6IIzpa FII (a/h), s6II =
P6x

z2pR4
(2R2 − x2)1/2,

KII1 =KII2 =KII4 =KII5 =0,

KIII2 = s2zpa FIII (a/h), s2 =
kP2

z2pR2
,

KIII6 = s6IIIzpa FIII (a/h), s6III =
P6x
pR4 (2R2 − x2)1/2,

KIII1 =KIII3 =KIII4 =KIII5 =0, (5)

where

F1(a/h)=
(tan l)1/2

l1/2 [0·752+2·02(a/h)+0·37(1−sin l)3]/cos l,

F2(a/h)=
(tan l)1/2

l1/2 [0·923+0·199(1−sin l)4]/cos l,

FII (a/h)= [1·122−0·561(a/h)+0·085(a/h)2 +0·18(a/h)3](1− a/h)1/2,

FIII (a/h)= (tan l)1/2/l1/2,

in which l= pa/2h, h=(4R2 −2x2)1/2 and k=6(1+ n)/(7+6n), assuming the same shape
coefficient for the elliptic section.
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From equations (1)–(4), we can derive the coefficients of the compliance matrix in
non-dimensional form. These are given as follows:

c̄11 = pERc11/(1− n2)=z2 g
ā

0 g
b�

0

ȳF1(h�)2 dx̄ dȳ,

c̄15 = pER2c15/(1− n2)=4z2 g
ā

0 g
b�

0

ȳz1− x̄2 F1(h�)F2(h�) dx̄ dȳ,

c̄55 = pER3c55/(1− n2)=16z2 g
ā

0 g
b�

0

ȳ(1− x̄2)F2
2 (h�) dx̄ dȳ,

c̄44 = pER3c44/(1− n2)=8z2 g
ā

0 g
b�

0

ȳx̄2F2
1 (h�) dx̄ dȳ,

c̄14 = pER2c14/(1− n2)=4 g
ā

0 g
b�

0

ȳx̄F2
1 (h�) dx̄ dȳ,

c̄45 = pER3c45/(1− n2)=8z2 g
ā

0 g
b�

0

ȳx̄z1− x̄2 F1(h�)F2(h�) dx̄ dȳ,

c̄33 = pERc33/(1− n2)=z2 g
ā

0 g
b�

0

ȳF2
II (h�) dx̄ dȳ,

c̄22 = pERc22/(1− n2)=z2 g
ā

0 g
b�

0

ȳF2
III (h�) dx̄ dȳ,

c̄62 = pER2c62/(1− n2)=2z2 g
ā

0 g
b�

0

ȳz(1− x̄2) F2
III (h�) dx̄ dȳ,

c̄63 = pER2c63/(1− n2)=2 g
ā

0 g
b�

0

ȳx̄F2
II (h�) dx̄ dȳ,

c̄66 = pER3c66/(1− n2)=8 g
ā

0 g
b�

0

(A1 +mA2) dx̄ dȳ, (6)

where ȳ= y/R, x̄= x/z2R, h�= y/h, ā= a/R, b�= b/z2R, A1 =0·25 x̄2ȳF2
II (h�)z2 and

A2 =0·5(1− x̄2)ȳF2
III (h�)z2.
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The local flexibility due to the crack can thus be written as a matrix, Cc , as

c̄11R

0 c̄22R

0 0 c̄33R symmetric
G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

Cc =
1
F0

c̄41 0 0 c̄44/R
,

c̄51 0 0 c̄54/R c̄55/R

0 c̄62 c̄63 0 0 c̄66/R

where F0 = pER2/(1− n2), R=D/2 and n=0·3.

3.2.   

Neglecting the shearing action and by using the strain energy, the flexibility coefficients
for a section of an element without a crack can be derived in the form

l
AE

0
l3

3EI
symmetrical

0 0
l3

3EI

C0 = 0 0 −
l2

2EI
l

EI
.

0
l2

2EI
0 0

l
EI

0 0 0 0 0
l

GIp

A crack on a beam element introduces considerable local flexibility due to strain energy
concentration in the vicinity of the crack tip under load. According to the Saint-Venant
principle, the stress field is affected only in the region adjacent to the crack. The element
stiffness matrix, except for the cracked element, may be regarded as unchanged under a
certain limitation of element size [12]. It is very difficult to find an appropriate shape
function to express the kinetic energy and elastic potential energy approximately, because
of the discontinuity of deformation in the cracked element. However, the additional stress
energy of a crack has been studied thoroughly in fracture mechanics and the flexibility
coefficient, expressed by a stress intensity factor, can be easily derived, as discussed earlier
in section 3.1. The shaft can be divided into finite elements (see Figure 3). The behaviour
of the elements situated to the right of the cracked element may be regarded as external
forces applied to the cracked element, while the behaviour of elements situated to its left
may be regarded as constraints [12]. Thus the flexibility matrix of a cracked element with
constraints may be calculated. The additional strain energy due to the crack results in a
local flexibility matrix [Cc ], which has already been obtained above in section 3.1.
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T 1

Rotor–bearing data

Operating speed of rotor 60 rad/s
Torsional frequency 25 rad/s
Length of the rotor, L 50 cm
Shaft

Diameter, D 2 cm
Density and elastic modulus 7800 kg/m3, 2·08 E11 N/m2

Disc
Location Mid-span
Mass, m 5·5 kg
Polar moment of inertia, IP 0·01546 kg m2

Diametral moment of inertia, ID 0·00773 kg m2

Unbalance eccentricity, e 0·1 mm
Crack location, Z/L 0·4
Bearing (isotropic)

Stiffness 105 N/m
Damping 100 Ns/m

To obtain the total flexibility of the cracked element one must add the local flexibility
due to the crack [11–13]. The total flexibility matrix for the cracked section is given as
[C]= [C0]+ [Cc].

Considering six degrees of freedom (d.o.f.) at each node—that is, 12 d.o.f. for the
element and from the equilibrium condition (see Figure 3)—the following equation can
be written:

(q1, q2, . . . , q12)T = [T](q7, . . . , q12)T, (7)

where the transformation matrix is

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 −l −1 0 0

0 l 0 0 −1 0

0 0 0 0 0 −1
T=

1 0 0 0 0 0
.

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Using the principle of virtual work, the stiffness matrix of the cracked element can be
written as [12, 13]

[Kc ]= [T][C]−1[T]T. (8)

K
G
G
G
G
G
G
G
G
G
G
G
GG
G
k

L
G
G
G
G
G
G
G
G
G
GG
G
G
G
l
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T 2
Eigenfrequencies of undamped and uncracked rotor–bearing system

Mode Eigenfrequency (rad/s)

1 152·5
2 598·2
3 1733·6

4. THE SYSTEM EQUATION OF MOTION

Nelson and McVaugh [14] presented a finite element model using Rayleigh’s beam
theory for a rotor–bearing system consisting of rigid discs, distributed parameter finite
shaft elements and discrete bearings. Ozguven and Ozkan [15] presented an extended model
by synthesizing the previous models. The present study uses these models by including the
slant crack model. In addition, the axial and torsional mode shape functions are derived
by assuming a linear variation along the z-axis of the element [16]. No coupling between
the axial, bending and torsional modes is assumed while deriving the matrices. The shaft
is discretized into finite beam elements (Figure 3). As shown in Figure 3, each element has
six degrees of freedom at each node, represented by q1–q12 (although the element is shown
with a slant crack, the degrees of freedom considered are the same for an uncracked
element as well). The discrete bearing stiffness and damping and the rigid disc mass
parameters are considered at the corresponding degrees of freedom, after assembling the
different shaft elements.

Assembling the different rotor components, the equation of motion of the complete
rotor system in a fixed co-ordinate system (see Figure 3), can be written as

[M]{q̈}+[D]{q̇}+[K]{q}= {Q}, (9)

Figure 5. Variation of the normalized bending stiffness with the slant crack depth. ——, KXX ; – – – –, KYY .
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where the mass matrix includes the rotary and translational mass matrices of the shaft,
the rigid disc mass and the diametral moments of inertia. The matrix D includes the
gyroscopic moments and bearing damping. The stiffness matrix considers the stiffnesses
of the shaft, the bearing and the cracked shaft element. The details of the individual
matrices of equation (9), except for that of cracked shaft element, are given in references
[14–16].

4.1.    

The details of the stiffness matrix of the slant cracked shaft element are discussed in
section 3. The crack is assumed to affect only the stiffness. The element with a crack will

Figure 6. Variation of eigenfrequencies with the relative crack depth. ——, Slant crack; – – – –, transverse
crack.
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Figure 7. Variation of mode shapes with the slant crack depth. – – – –, No crack; ——, ā=0·5.

replace the corresponding uncracked element while assembling different rotor components
in equation (9) resulting in [K� ], the system stiffness matrix. For eigenvalue analysis, the
crack is assumed to be open. The eigenfrequencies are obtained by solving the eigenvalue
problem [K]−v2[M]=0, and [K� ]−v2[M]=0, for the uncracked and cracked shafts,
respectively. However, stiffness variation with time and torsional frequency for the cracked
element is considered below for the steady state response, and this element will replace the
uncracked element.

4.2.    

It has been mentioned in section 2 that the slant crack is generated because of torsional
vibration, and opens and closes (i.e., ‘‘breaths’’) with torsional vibrations of the shaft. The
moment of inertia of the section containing the crack will be higher when a negative
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moment is applied. As the bending stiffness of the shaft is proportional to the inertia of
the section of the shaft, we expect the bending stiffness of the shaft with slant crack to
change synchronously with the torsional vibration.

The variation of the stiffness of the cracked element can be expressed by a truncated
cosine series [17]:

[K]= [K(vTt)]= [K0]+ [K1] cos (vTt)+ [K2] cos (vTt)+ [K3] cos (vTt), (10)

where [Kn ], n=0, . . . , 3 are the fitting coefficient matrices determined from the known
behaviour of the stiffness matrices at certain angular locations, as given in reference [17].
For smooth transition from open to closed, one can consider the half crack condition as
satisfied in references [17, 18]. However, only fully open or fully closed conditions of the

Figure 8(a).
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Figure 8.—continued.

crack are considered here. When the crack is fully closed, the shaft element will be treated
as uncracked. The following conditions are used for the breathing:

at vTt=0, [K]= [K]UC and 12/1f2[K]=0,

at vTt= p, [K]= [K]op and 12/1f2[K]=0,

where f=vTt and UC and op denote uncracked and open crack conditions, respectively.
With the above conditions, we evaluate

[K0]= ([K]op +[K]UC )/2, [K1]=9([K]UC −[K]op )/16,

[K2]=0, [K3]= ([K]op −[K]UC )/16, (11)
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Figure 8.—continued.

where [K]op and [K]UC are for the open and uncracked conditions respectively. These can
be obtained from the compliance matrices C0 and C, and by using equation (8). Thus the
stiffness of the cracked element at any time can be obtained if torsional frequency vT is
known.

In the present study, the Houbolt time marching technique [18] has been used to model
the system and obtain the steady state response in the time domain. Although the stiffness
varies with time when the shaft is cracked, during a small time step, the stiffness was
assumed to be constant and the same time marching scheme was used.
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Figure 8(d)

Figure 8. The steady state responses and frequency spectra of the rotor. (a) No slant crack; (b) slant crack depth,
ā=0·2; (c) slant crack depth, ā=0·3; (d) slant crack depth, ā=0·4.

5. RESULTS AND DISCUSSION

The rotor shaft is discretized into 25 finite elements. The stiffness matrix of the cracked
element replaces the uncracked element while assembling for the rotor–bearing system. The
data used for the rotor–bearing system with slant crack are shown in Table 1. For the eigen-
frequency analysis, the crack is considered as open. Simultaneous iteration techniques are
used to solve the undamped eigenvalue problem. The eigenfrequencies for an undamped
and uncracked rotor are given in Table 2. The bending stiffness of the cracked element
is different in the X- and Y-directions, the variation with crack depth being clearly
visible in Figure 5. Here, the normalization is carried out with that of the uncracked
element.
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The variation of eigenfrequencies in different modes of the rotor with slant and
transverse [13] crack depths is shown in Figures 6(a–c). The comparison in
Figures 6(a–c) shows that the eigenfrequencies decrease with slant crack depth in a similar
way as in the case of a transverse crack [13]. This is expected, as the slant crack also
reduces the effective stiffness of the rotor system. However, the decrease in eigenfrequencies
depends on how close the crack is to the node of the corresponding mode shape. This
can be clearly seen by observing the mode shapes shown in Figures 7(a–c). It is also
found from Figures 6(a–c) that the decrease in eigenfrequencies is smaller with
relative crack depth, for the same crack location (Z/L), in the case of the slant crack
being compared to that of the transverse crack. However, the detection of the
slant crack can be done effectively by considering the steady state and transient
responses.

The steady state responses of the rotor and corresponding frequency spectra (obtained
from the fast Fourier transform (FFT)) are shown in Figures 8(a–d) for different crack
depths. Since the running speed of the rotor is 60 rad/s (9·54 Hz), there is a synchronous
frequency at 9·54 Hz in the spectra. When the crack depth increases, however, it can be
noticed that the subharmonic frequencies are centered on 9·54 Hz in Figures 8(b–d). The
interval frequency of this subharmonic vibration is equal to 3·97 Hz, which is the same
as the torsional frequency (25 rad/s) of the rotor. These results match well with the findings
in references [9, 10].

It was shown in reference [9] that the steady state response of the rotor system with a
slant crack on its shaft induced by unbalance contains frequencies represented by
vn =V2 nvT /2; m=1, 2, . . . and n=0, 1, 2, . . . , where V is the operating speed of the
rotor and vT is the frequency of torsional vibration of the rotor system. However, in the
present numerical results, observations similar to those in reference [9] are made where only
terms that are even in n are satisfied (see Figures 8(a–d)). The frequencies are represented
by vn =V2 nvT .

The results of the present study agree well with those of reference [9]. The aim of the
present study is to develop a stiffness matrix of the slant cracked element so as to use it
easily in FEM analysis. This work can easily be extended to further studies such as
transient and stability analysis.

6. CONCLUSIONS

In the present study an FEM analysis of a rotor–bearing system for flexural vibrations
has been considered by including a shaft having a slant crack.

A flexibility matrix for the slant crack has been derived, on similar lines as in the work
of Papadopoulos and Dimarogonas [11] for a transverse crack. This is used to develop the
stiffness matrix of a slant cracked element, for subsequent use in FEM analysis of the
rotor–bearing system.

A general trend of a reduction in the eigenfrequencies of all of the modes with an
increase in crack depth has been observed. This behaviour is similar to the case of the
transverse crack. However, it is observed that the decrease in eigenfrequencies with relative
crack depth, for the same crack location, is smaller in the case of a slant crack compared
to that of a transverse crack.

The frequency spectrum of the steady state response of the cracked rotor was found to
have subharmonic frequency components at an interval frequency corresponding to the
torsional frequency, which can be used for crack detection.

This work can easily be extended to further studies such as transient and stability
analysis.
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APPENDIX: NOMENCLATURE

[C] flexibility matrix with crack
[D] matrix includes gyroscopic effects and damping
D diameter of shaft
e unbalance eccentricity of the rotor
E modulus of elasticity
ID diametral moment of inertia
IP polar moment of inertia
[K] stiffness matrix
l element length
L length of rotor
[M] mass matrix
MZ torsional moment
{q} vector for nodal quantities



. .   .  474

{Q} force vector
t time
Z location of crack
a crack depth
ā = a/D
v0i eigenfrequency of uncracked rotor for ith mode
vi eigenfrequency of cracked rotor for ith mode
vT torsional frequency


